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ABSTRACT

Human Attribute Segmentation (HAS) describes, pixel-
wise, the different semantic parts of people in an image.
This fine-grained description is useful for several applica-
tions (e.g. security, fashion). However, despite the good
performance reached by supervised Semantic Segmentation
(SS) approaches, they are usually biased by the source train-
ing dataset and suffer from a performance drop when ap-
plied on new domains. Pixelwise image annotation for each
new encountered context is tedious and expensive. So how
can HAS become more robust to new contexts without new
annotations? In this first study of Unsupervised Domain
Adaptation (UDA) for HAS, we present UDA-HPTR, a new
method based on HPTR [1] (Human Parsing with TRans-
formers) combined with self-supervised and semi-supervised
learning paradigms to deal with UDA. UDA-HPTR improves
performance on both source (labeled) and target (unlabeled)
datasets compared to the fully supervised version (HPTR). It
also outperforms HRDA, a state-of-the-art UDA method in
autonomous driving benchmarks, by +6.7 p.p. on the source
and +8.8 p.p. on the target, when applied to HAS while using
only half the number of parameters.

Index Terms— Human attribute semantic segmenta-
tion, human parsing, unsupervised domain adaptation, semi-
supervised learning, self-supervised learning

1. INTRODUCTION

Human Attribute Segmentation (HAS) is a specific seman-
tic segmentation task that localizes pixelwise the human at-
tributes (visible body parts, clothes and accessories) in an
image (cf. Fig. 1). This fine-grained description of people
is generally handled together with the person detection and
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Fig. 1. Human Attribute Segmentation (HAS) of a sam-
ple (left) from unlabeled target dataset MHP-GB [2] by
HRDA [3] (middle) and UDA-HPTR (right).

segmentation tasks, in the so-called Human Parsing (HP). It
is particularly useful for retrieval or augmented reality appli-
cations. But, large amounts of precisely annotated data are
needed to achieve adequate performance on different opera-
tional contexts. While acquiring images containing people
can be easy, annotating them pixelwise is tedious and expen-
sive. So, how to avoid annotating new data?

Supervised Human Parsing. Several methods tackle su-
pervised HP. Single-person HP approaches [4, 5] make the as-
sumption that only one person is present in the image, with-
out dealing with the attribute-to-person assignment problem
when an image contains many people. On the contrary, multi-
person HP approaches distinguish instances. Top-down ap-
proaches can be either rwo-stage [6] if they require human in-
stance segmentation as an additional input (thus, they are sim-
ilar to single-person methods), or one-stage [7, 8, 9] if they
jointly provide human instances and attributes. Nevertheless,
in both cases, the inference time highly depends on the num-
ber of humans per image. In contrast, botfom-up methods
[1, 10, 2] reach lower performance but are more scalable, as
their inference time is constant regardless of the number of
people per image, which is especially useful for real-time ap-
plications. In addition, for such applications, inference time
should not only be constant, but also reduced. Yet, some
bottom-up methods are not fast enough due to their expensive
post-processing [10] or heavy GAN architectures [2]. Cur-
rently, HPTR [1] (Human Parsing with TRansformers) is the
fastest bottom-up approach while having comparable perfor-
mance with other state-of-the-art (SOTA) methods. It is an
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end-to-end multi-task approach based on the object detector
DETR [11], jointly providing human detection and instance
segmentation, in addition to predicting human attributes and
their characteristics (size, pattern, color). Note that all these
methods are fully supervised, using manually annotated train-
ing dataset, and testing on images from the same distribution.

Unsupervised Domain Adaptation (UDA) has not been
studied yet for HP or HAS but has received much attention
for Semantic Segmentation (SS). The goal is to transfer
the learned knowledge from a source annotated dataset to
a target unlabeled dataset which can have a different dis-
tribution. The existing UDA approaches for SS are based
on either adversarial training [12, 13] or pseudo-labeling
[14, 3]. The idea behind adversarial training is to align fea-
tures and/or images of source and target domains using a
discriminator network. Adversarial training aims to align
features and/or images of source and target domains using
a discriminator network. Recently, SOTA methods have fo-
cused on pseudo-labeling inherited from the semi-supervised
learning paradigm, where only a small portion of the dataset
is annotated. These methods usually adopt a student-teacher
scheme, where the teacher’s predictions on the unlabeled part
of the dataset are used as pseudo-labels to train the student
model jointly with the labeled images. Different techniques
are used to regularize the training. In particular, Unbiased
Teacher [15, 16] (UT) proposes to mutually train the stu-
dent and a gradually updated teacher to ensure better quality
pseudo-labels, which significantly improves Object Detection
(OD) performance. Similarly to semi-supervised learning,
several UDA methods use a student-teacher scheme [14, 3],
trying to transfer information from a labeled source dataset to
an unlabeled target dataset. Particularly, HRDA [3] uses the
UT solution to continuously propagate information from stu-
dent to teacher, along with the architecture and regularization
techniques of DAFormer [14] such as rare class sampling,
forward distance and learning rate warm-up. It also uses do-
main mixing by adding source instances to target images and
learns a multi-resolution input fusion. Currently, it signif-
icantly outperforms SOTA in UDA for SS on autonomous
driving datasets by adapting models learnt on synthetic data
to real-world unlabeled images.

Self-Supervised Learning is another paradigm that ex-
ploits unlabeled data for a better generalization. It learns rep-
resentations from automatically-labeled pretext tasks. These
tasks are generally used to pre-train the model followed by
a fine-tuning on the down-stream task, or added to the train-
ing process as an Auxiliary Task (AT). The most recent works
use contrastive learning [17, 18] to bring closer features of
different forms of the same image while keeping those of dif-
ferent images distant. This achieves great results for image
classification. To target more localization-dependent tasks
such as OD and SS, several other methods deal with local
representation learning at pixel level [19, 20, 21]. In partic-
ular, ReSim [21] maximizes region similarity of correspond-
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Fig. 2. Overview of UDA-HPTR training: after (1) a super-
vised burn-in on the source dataset for OD and HAS, (2) semi-
and self-supervised learning on the target dataset allow UDA.

ing sliding windows over different views of the same image,
which aims to learn a more spatially and semantically consis-
tent feature representation, as required by HP.

In this work, we propose UDA-HPTR (see Fig. 2), a
first solution studying UDA for HAS. It is based on HPTR
[1], the fastest and scalable HP method with competitive per-
formance. We study how to improve its robustness to con-
texts by combining two label-free paradigms. (i) We train
our model in a semi-supervised manner by adapting our UDA
problem to the UT [15] scheme. (ii) We exploit the self-
supervised approach ReSim [21] by adding it to the train-
ing, both as a pretrain and an AT. The effectiveness of the
proposed approach is demonstrated through extensive abla-
tion experiments on a new proposed benchmark for UDA-
HAS. Our contributions can be formulated as follows: (1) We
propose UDA-HPTR, an UDA method for HAS by jointly
adopting self-supervised and semi-supervised approaches to
the specific task of HAS. To the best of our knowledge, this
is the first attempt that combines these two paradigms for
a better UDA, and that studies UDA for HAS. (2) We cre-
ate and share [22] a new suitable benchmark for UDA-HAS.
(3) We show that our UDA-HPTR highly outperforms the
SOTA method for UDA-SS. Suprisingly, despite its good per-
formance on autonomous driving datasets, HRDA is not nec-
essarily the most effective for the particular segmentation case
of HAS (cf. illustration in Fig. 1).

2. METHOD

2.1. Overview

UDA-HPTR, deals with UDA for HAS (see Fig. 2) using
source annotated and target unlabeled datasets. The goal is
to improve the model robustness by adapting it to the target
domain without any annotation, despite its discrepancy from
the source dataset. Therefore, we use HPTR [1] as our base
architecture. The original method performs human detection
and instance segmentation, as well as attribute and character-
istic segmentation. UDA-HPTR is lightened (cf. Fig. 3) to
focus on human detection and attribute segmentation.

To perform UDA, we combine two main paradigms. We
adapt the UT [15] scheme to HPTR method. We further in-
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Fig. 3. Overview of UDA-HPTR architecture: Backbone, Hu-
man Detection and Human Attribute Segmentation blocks are
the same as in HPTR [1]. A self-supervised Auxiliary Task on
target is plugged into the backbone.

tegrate within the semi-supervised training step, the ReSim
[21] AT for its capacity to better learn local features repre-
sentation. This helps the model have better pseudo-labels for
HAS, and learn features related to the target as well.

2.2. Supervised Burn-in and Semi-Supervised Training

Following UT, our training is composed of two stages. First, a
Supervised Burn-in (SBI) training uses weak and strong aug-
mentations (cf. Sec. 3.1) of the source images. This step
serves as initialization of both student and teacher models.
Here, we remove the instance segmentation and the character-
istic segmentation branches to alleviate the base HPTR archi-
tecture, since we focus on UDA-HAS. The new architecture
(Fig. 3) performs human detection and HAS. At SBI step,
the training objective iS Lsyp = Lhuman + Lattrin, Where
Lhuman = LHungarian + Lbbo:}c + Lhuman,class- The differ-
ent terms are such as defined in HPTR [1].

Second, a Semi-Supervised Training (SST) step is con-
ducted. At each iteration, we use the teacher model to gen-
erate predictions on weakly augmented target images, which
are then filtered. For object detection, we follow UT by using
Non-maximum Suppression (NMS) and confidence thresh-
olding keeping non-overlapped bounding boxes having high
confidence > 4. For attribute segmentation, for each pixel, we
apply a softmax function on the model’s output and choose
the class attribute having the maximum probability. These
filtered predictions are then used as pseudo-labels to train
the student on a strongly augmented version of the same tar-
get images. The supervised training on weakly and strongly
augmented source images continues alongside. The differ-
ent augmentation techniques help the model regularization.
This approach ensures a gradual improvement of the student
generalization. On the other hand, the knowledge learned by
the student is transferred to the teacher using an Exponential
Moving Average (EMA) on the network weights to gradually
improve the quality of the pseudo-labels, as in UT. At SST

step, the training objective is the weighted sum of L,,;, and
Ly sup, Which have the same definition applied to predictions
on resp. labeled/unlabeled images and their related ground
truth/pseudo-labels: Lgemi = Lgup + Ay Lunsup-

2.3. Auxiliary Task

To further improve UDA, SST is assisted by a self-supervised
AT (cf. Fig. 3). We choose to integrate the knowledge
of the target domain to our backbone using ReSim [21] by
adding a specialized head. It maximizes region similarity
of sliding windows over different views of the same image.
We apply this method on the target dataset to learn more
adapted feature representation. It also allows an implicit fea-
ture alignment between the source and the target datasets as
this task is performed alongside the supervised learning on the
source dataset. To this end, we optimize the model by adding
Loy task (such as defined in [21]) to the semi-supervised
loss. At SST step, L final = Lsup + AuLunsup + Lavs_task-

3. EXPERIMENTS AND RESULTS

3.1. Implementation Details

For UDA-HPTR, we use the HPTR [1] base code. The en-
coder is a ResNet-50 pre-trained by ReSim [21] on ImageNet
for 400 epochs. Our training is done on 8 NVIDIA A100
80GB, with 64 images per batch, and a learning rate v =
0.0001. We train the SBI stage during 100 epochs, and the
SST for another 100 epochs. Each batch in SST is equally
divided into 32 source and 32 target images. The EMA rate
and the pseudo-labels filtering for OD are the same as in UT
[15]. To balance the supervised and unsupervised losses dur-
ing SST, we use A, = 1. Lower values of A\, and  are
chosen compared to [15] to deal with the smaller datasets, in
order to prevent over-fitting. We use the same augmentations
as UT, however, since CCIHP [1] labels include left and right
variants of attributes arms, legs, and shoes, we have disabled
horizontal flips. Please refer to [15] for more details.

For HRDA, we use the same code and configuration avail-
able at [23], while disabling the flip augmentations for the
same reason as above. We have also used the forward distance
on all attribute classes since all of them represent things. For a
fair comparison, we conducted an extensive hyper-parameter
tuning on image sizes, LR and HR crop sizes, image nor-
malization, learning rate warm-up, rare class sampling, EMA
and confidence estimate threshold, for our specific task and
datasets. However, the default parameters gave always better
performance, hence they were kept.

3.2. Datasets and Evaluation Protocols

CIHP [10] is the largest existing multi-person HP dataset,
with 28,280 images for train and 5,000 images for validation.
It contains 110,700 segmented people, with an average of 3
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Source (CCIHP) Target (MHP-GB)
Method SST AT #P | Src-Only UDA Rel. Src | Src-Only UDA Rel. Src  Oracle Rel. Tgt
HRDA [3] v X 852 471 477 101.3% 417 421 101.0% 58.0 72.6%
UDA-HPTR v v 415 535 544 101.7% 49.2 509 103.5% 53.2 95.7%
UDA-HPTR-vl v/ X 415 53,5 54.0 100.9% 49.2 505 102.6% 53.2 94.9%
UDA-HPTR-v2 X v 415 53,5 532 99.4% 49.2 488 99.2% 53.2 91.7%
HPTR X X 415 53.5 - 100.0% 49.2 - 100.0% 53.2 92.5%

Table 1. Human Attribute Segmentation performance (mlIoU in %, relative gain of UDA in %, and performance wrt supervised
Oracle in %) of SOTA method HRDA compared to our UDA-HPTR, and its variants with ablation of Semi-Supervised Training
(SST) and Auxiliary Task (AT). #P is the number of parameters of the model (in million).

people per image. It segments humans into 19 possible se-
mantic attribute classes. Characterized CIHP (CCIHP) [1]
adds characteristics annotations of color, size, and pattern, for
each attribute of CIHP and improves HAS annotation. We de-
fine CCIHP as our source dataset.

MHP v2.0 [2] is another major dataset for multi-person
HP with 20,403 images and an average of 3 people per im-
age. It provides 58 semantic attribute classes. MHP Gray
Blurred (MHP-GB) is a version of MHP v2.0 we generated
to widen the gap between source and target, and make UDA
more challenging. We transform the images to grayscale, and
downscale them by a factor 2 before upscaling them back to
their original size to add blur. We map the 58 classes to the
19 CCIHP classes (cf. script soon available at [22]). Only the
‘face mask’ class has no MHP equivalent. So, it is not evalu-
ated on MHP-GB. We define MHP-GB as our target dataset.

Metrics. We use mloU for HAS to evaluate different re-
sults. For each method and ablation, we provide the source-
only performance (trained only on supervised source data:
Src-Only), the UDA performance (trained on both supervised
source and unsupervised target data: UDA), as well as the ora-
cle performance for an upper-bound on target dataset (trained
on supervised target data: Oracle). We also add metrics to
illustrate the relative performance for a fair comparison of
different methods: Rel. Src is the relative performance gain
of UDA over Src-Only, and shows the impact of UDA over
the model robustness; Rel. Tgt is the relative performance of
UDA over Oracle and represents the quality of UDA com-
pared to the supervised upper-bound.

3.3. Comparison of UDA-HPTR with SOTA method for
semantic segmentation

In the first two lines of Table 1, we compare UDA-HPTR,
against HRDA [3]. On the source dataset, we notice that
UDA-HPTR largely surpasses HRDA on UDA absolute re-
sults (54.4% vs. 47.7%) despite using less than half the num-
ber of parameters. Moreover, for a fair comparison of the gain
of the UDA approaches, we compare Rel. Src. We can see that
UDA-HPTR was able to learn slightly better by gaining 1.7%
instead of 1.3%, on the source dataset. More importantly,
this is also the case on the target dataset, where UDA-HPTR
largely outperforms HRDA (50.9% vs. 42.1%), gaining up to
3.5% instead of 1.0% relative to the non-adapted models.

Moreover, while HRDA has much better oracle perfor-
mance on the target dataset, it was only able to reach 72.6%
of this capacity after UDA. Thus, there is still room for better
adaptation. On the other hand, UDA-HPTR reaches 95.7%
of its total capacity on the target dataset without using any
annotation. In fact, switching from oracle to UDA, HRDA
loses 15.9p.p. (42.1% vs. 58.0%), while UDA-HPTR de-
grades only by 2.3 p.p. (50.9% vs. 53.2%). This proves the
effectiveness of our UDA approach for HAS, resulting in a
model better adapted to target and improved on source. Sur-
prisingly, despite its good performance on synthetic to real
UDA for autonomous driving scenes, HRDA has lower per-
formance when applied to HAS.

3.4. Ablation of the SST and AT

To study the impact of SST (UT) on UDA-HPTR, we consider
the fully supervised version (HPTR) trained for 200 epochs
(equivalent in time to 100 for SBI + 100 for SST). This ver-
sion surpasses the original HPTR (53.5% vs. 52.1% [1]) on
CCIHP, thanks to the alleviated tasks learned. Further, com-
paring the performance of this model, to the one trained in
a semi-supervised manner without AT (UDA-HPTR-v1), we
notice that SST improves the generalization to both source
(54.0% vs. 53.5%) and target datasets (50.5% vs. 49.2%).
Surprisingly, the use of the AT without semi-supervised
learning, i.e. as a pre-train task (UDA-HPTR-v2), decreases
performance for both source (53.2% vs. 53.5%) and target
(48.8% vs. 49.2%) datasets. However, adding the same AT
during the SST (UDA-HPTR) shows additional benefit, with
54.4% mloU on source and 50.9% on target, i.e., a +0.4 p.p.
improvement on both datasets compared to UDA-HPTR-v1.

4. CONCLUSION

This investigates how to improve HAS robustness to new con-
texts without extra annotations. We present UDA-HPTR, a
first solution to UDA for HAS. It is also a first attempt to com-
bine two well-known paradigms for UDA (semi-supervised
and self-supervised learning). We show that, on a novel
UDA-HAS benchmark, UDA-HPTR outperforms HRDA,
the SOTA method for UDA for SS on autonomous driving
datasets, while using less than half the number of parameters.

1728

Authorized licensed use limited to: Sheffield Hallam University. Downloaded on December 04,2023 at 14:14:28 UTC from |IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

5. REFERENCES

A. Loesch and R. Audigier, “Describe Me If You Can!
Characterized Instance-Level Human Parsing,” in ICIP,
2021.

J. Zhao, J. Li, Y. Cheng, T. Sim, S. Yan, and J. Feng,
“Understanding Humans in Crowded Scenes: Deep
Nested Adversarial Learning and A New Benchmark for
Multi-Human Parsing,” in ACM MM, 2018.

L. Hoyer, D. Dai, and L. Van Gool, “HRDA: Context-
aware high-resolution domain-adaptive semantic seg-
mentation,” in ECCV, 2022.

K. Gong, Y. Gao, X. Liang, X. Shen, M. Wang, and
L. Lin, “Graphonomy: Universal Human Parsing via
Graph Transfer Learning,” in CVPR, 2019.

H. He, J. Zhang, Q. Zhang, and D. Tao, “Grapy-ML.:
Graph Pyramid Mutual Learning for Cross-Dataset Hu-
man Parsing,” in AAAI, 2020.

T. Ruan, T. Liu, Z. Huang, Y. Wei, S. Wei, Y. Zhao,
and T. Huang, “Devil in the Details: Towards Accurate
Single and Multiple Human Parsing,” in AAAZ 2018.

L. Yang, Q. Song, Z. Wang, and M. Jiang, “Parsing R-
CNN for Instance-Level Human Analysis,” in CVPR,
2019.

L. Yang, Q. Song, Z. Wang, M. Hu, C. Liu, X. Xin,
W. Jia, and S. Xu, “Renovating Parsing R-CNN for Ac-
curate Multiple Human Parsing,” in ECCV, 2020.

S. Zhang, X. Cao, G.-J. Qi, Z. Song, and J. Zhou,
“AlParsing: Anchor-Free Instance-Level Human Pars-
ing,” IEEE TIP, 2022.

K. Gong, X. Liang, Y. Li, Y. Chen, M. Yang, and L. Lin,
“Instance-level Human Parsing via Part Grouping Net-
work,” in ECCV, 2018.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kir-
illov, and S. Zagoruyko, “End-to-End Object Detection
with Transformers,” in ECCV, 2020.

F. Pizzati, R. d. Charette, M. Zaccaria, and P. Cerri, “Do-
main Bridge for Unpaired Image-to-Image Translation
and Unsupervised Domain Adaptation,” in WACYV, 2020.

H. Wang, T. Shen, W. Zhang, L. Duan, and T. Mei,
“Classes Matter: A Fine-Grained Adversarial Approach
to Cross-Domain Semantic Segmentation,” in ECCV,
2020.

L. Hoyer, D. Dai, and L. Van Gool, “DAFormer: Im-
proving Network Architectures and Training Strate-
gies for Domain-Adaptive Semantic Segmentation,” in
CVPR, 2022.

1729

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]
(23]

Y.-C. Liu, C.-Y. Ma, Z. He, C.-W. Kuo, K. Chen,
P. Zhang, B. Wu, Z. Kira, and P. Vajda, “Unbi-
ased Teacher for Semi-Supervised Object Detection,” in
ICLR, 2021.

Y.-C. Liu, C.-Y. Ma, and Z. Kira, “Unbiased Teacher v2:
Semi-supervised Object Detection for Anchor-free and
Anchor-based Detectors,” in CVPR, 2022.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A
Simple Framework for Contrastive Learning of Visual
Representations,” in ICML, 2020.

M. Caron, 1. Misra, J. Mairal, P. Goyal, P. Bojanowski,
and A. Joulin, “Unsupervised Learning of Visual Fea-
tures by Contrasting Cluster Assignments,” in NeurIPS,
2020.

M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy,
and H. Lee, “Unsupervised Learning of Object Structure
and Dynamics from Videos,” in NeurIPS, 2019.

J. Rabarisoa, V. Belissen, F. Chabot, and Q.-C. Pham,
“Self-supervised pre-training of vision transformers for
dense prediction tasks,” in CVPR T4V Workshop, 2022.

T. Xiao, C. J. Reed, X. Wang, K. Keutzer, and T. Darrell,
“Region Similarity Representation Learning,” in ICCV,
2021.

https://kalisteo.cea.fr/index.php/free-resources/.

https://github.com/lhoyer/HRDA.

Authorized licensed use limited to: Sheffield Hallam University. Downloaded on December 04,2023 at 14:14:28 UTC from |IEEE Xplore. Restrictions apply.



