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Abstract

The present work proposes a holistic approach to ad-
dress catastrophic forgetting in the field of computer vision
during the process of incremental learning. More specif-
ically, it suggests a series of steps for effective learning
of models in distributed environments, based on extract-
ing meaningful representations, modeling them into actual
knowledge, and transferring it through a continual distil-
lation mechanism. Additionally, it introduces a federated
learning algorithm tailored to the problem, eliminating the
need for central model transfer, by proposing an approach
based on multi-scale representation learning, coupled with
a Knowledge Distillation technique. Finally, inspired by the
current trend, it modifies a contrastive learning technique
combining existing knowledge with previous states, aiming
to preserve previously learned knowledge while incorporat-
ing new knowledge. Thorough experimentation has been
conducted to provide a comprehensive analysis of the is-
sue at hand, highlighting the great potential of the proposed
method, achieving great results in a federated environment
with reduced communication cost and a robust performance
within highly distributed incremental scenarios.

1. Introduction

The ever increasing number of smart devices leads to a

rapid expansion in the amount of data being exchanged, pre-

senting a substantial challenge, especially when handling

distributed data. This becomes increasingly challenging

when new labeled or unlabeled data are continuously in-

troduced to the system. As a result, the demand for systems

that can effectively exploit these data to adapt to new condi-

tions, i.e. tasks, while minimizing costs becomes even more
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pronounced. Several researchers dedicated resources to find

reliable solutions [8], but despite the vast amount of pub-

lished research on the topic, the challenge of learning new

knowledge without forgetting, particularly in the context of

distributed datasets, still poses significant challenges.

In the realm of computer vision, to achieve truly ro-

bust recognition performance and maintain the capacity to

recognize previously seen entities (e.g. objects or scenes)

when encountering new classes or datasets, it is crucial to

tackle several pivotal challenges. These include manag-

ing data heterogeneity and model bias effect, communica-

tion and synchronization, privacy and security concerns, as

well as ensuring scalability and efficiency in processing and

training distributed datasets to accommodate the increased

complexity [24]. To tackle these, research efforts primar-

ily concentrated on utilizing combinations of regulariza-

tion techniques and data synthesis methods to mitigate or

alleviate catastrophic forgetting, while network expansion

techniques and rehearsal-based approaches were explored

to expand network capacity and prioritize samples based on

their importance for learning, respectively [29]. Recent ad-

vancements in lifelong learning approaches [4, 37, 5] have

gained attention in incremental learning computer vision

research, reshaping the way visual analysis is conducted.

These techniques enable to learn generic learning patterns

that can adapt to new tasks and data, allowing the model to

continually improve its learning efficiency and adaptability.

By leveraging knowledge from previous tasks to facilitate

learning the new ones, these methods enable more robust

and coherent incremental learning.

While there has been extensive research on applying in-

cremental learning to centralized data settings, the explo-

ration of its application to federated datasets and tasks, is

still relatively limited, due to data privacy concerns, sys-

tem heterogeneity constraints, dynamic data distribution,

etc. Under a realistic scenario, end-users, or the nodes of the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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system, constantly generate new data that neither necessar-

ily belong to previously known categories nor follow a spe-

cific distribution. In an attempt to understand the problem

and train a general model, older versions of models and data

are maintanined, which constantly push the limits of sys-

tem requirements, inevitably leading to a sudden significant

decrease in their performance in previous tasks. Research

groups have devoted resources for approaches specifically

designed for federated settings, leveraging the power of in-

cremental learning while respecting the decentralized na-

ture of data. These approaches often involve a range of

learning techniques, such as knowledge distillation, life-

long learning, and hybrid approaches to achieve better per-

formance in preserving previous knowledge and learning

new knowledge incrementally [10, 9, 11, 23].

Through the application of a combination of techniques

such as representation learning, knowledge distillation, and

contrastive learning (CLR) in our approach, it becomes fea-

sible to address the challenges posed by dynamic, heteroge-

neous, and fragmented data. In a more specific context, the

generation of representations that encompass knowledge

from diverse levels of the model results in a robust feature

extractor with enhanced capabilities. When combined with

the Knowledge Distillation approach, this integration facil-

itates effective generalization at a federated level, allowing

for broader applicability and improved performance. For

incarnating the task incremental step, we leveraged CLR

[6] to distinguish optimal representations by contrasting

both global and local representation samples. The proposed

methodology aimed to enhance the overall quality of repre-

sentations by creating a latent space where global represen-

tations captured shared knowledge across different tasks,

while task-specific representations were well-separated, en-

abling effective discrimination and understanding of indi-

vidual tasks.

The main contributions of this work are summarized as

follows:

(a) A novel Federated Incremental Learning scheme
is introduced that utilizes multi-level representation

learning coupled with rehearsal-based knowledge dis-

tillation approaches that support FL optimization algo-

rithms and CRL techniques in an end-to-end learning

manner. The holistic nature of our approach ensures

a robust and scalable solution for incremental learning

in federated environments.

(b) A rehearsal-based knowledge distillation technique
to transfer this enriched knowledge to neighboring
nodes. Through knowledge distillation, the learned

insights and patterns from the well-mixed representa-

tions are effectively transferred and shared across the

federated network.

(c) A contrastive-based learning algorithm that utilizes

Figure 1: The proposed Federated Learning (FL) scheme utilizes

a centralized server to create and share the aggregated global rep-

resentations, while several local nodes participate asynchronously

in the training process.

mixed representations to retain knowledge gained
from previous tasks of the incremental scenario. By

combining features from different tasks, our algorithm

encourages the model to learn and preserve valuable

information across different task domains.

(d) Validate the effectiveness of the proposed approach
through extensive comparisons on one of the broad-
est publicly available benchmarks, demonstrating its

superiority and robustness across a broad spectrum of

FL settings.

The remainder of this paper is organized as follows: Re-

lated work is reviewed in Section 2. The proposed Feder-

ated Incremental learning scheme is presented in Section 3.

Implementation details along with experimental results are

discussed in Section 4 and conclusions are drawn in Section

5.

2. Related Work
2.1. Knowledge distillation

Knowledge distillation is a technique that aims to effi-

ciently transfer information from a large model (known as

teacher model) to a smaller one (known as student model).

The teacher model guides the student model to achieve a

better performance through an iterative learning process.

Knowledge distillation is widely used for model deploy-

ment on resource constrained devices. The concept of dis-

tillation learning is introduced in [16], using soft outputs

of the teacher model in order to guide the training of the

smaller model. Moreover, a distillation loss is introduced,

combined with the cross entropy loss to strike a balance be-

tween data fitting and mimicking the teacher. In most recent

works, Zhao et al. [39] divides the knowledge distillation in

two parts, namely the target and the non-target. The tar-

get knowledge distillation part is a binary logit distillation

for the target class and the non-target knowledge distilla-

tion part is a multi-category logit distillation for non-target
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classes. In [18], the deviation between the predictions of the

teacher and the student model is addressed. A correlation-

based loss is introduced to capture inter-class and intra-class

relations from the teacher. The technique of knowledge dis-

tillation has also extended to the field of FL as described in

2.3

2.2. Incremental learning

The Incremental Learning problem has been the focus

of various studies, encompassing different granular set-

tings. Typically, it can be broadly categorized into three

types, depending on the specific characteristics of the incre-

mental scenario, namely task-incremental learning, class-

incremental learning, and domain-incremental learning [2].

The first two share a similar setting in which new classes are

introduced in new tasks. However, the key distinction be-

tween them lies in the inference stage. Unlike other incre-

mental learning scenarios, where new tasks introduce new

classes, domain-incremental learning addresses the chal-

lenge of adapting to shifts in data distribution or domains

while preserving the existing label space. Each scenario

presents unique challenges, such as avoiding catastrophic

forgetting, handling domain shifts, or managing imbalanced

data distributions, and requires tailored approaches to en-

sure effective continual learning [28]. Therefore, research

on incremental learning covers a wide range of approaches,

including regularization-based methods, rehearsal and re-

play techniques, knowledge distillation, network expan-

sion, and hybrid approaches that combine multiple strate-

gies [3, 34, 26, 1, 40, 36, 27].

CRL serves as a potent instrument within the realm of

incremental learning. Its fundamental aim revolves around

crafting representations that induce a tendency for similar

instances to congregate in the embedding space (i.e. positive

pairs), while simultaneously propelling dissimilar instances

to be dispersed at a greater distance (i.e. negative pairs).

Inspired by the typical CRL framework in [6], recent break-

throughs in incremental learning argue that contrastively

learned representations are robust against the catastrophic

forgetting [32, 4, 13, 37, 5], and could be transferred better

to unseen tasks.

In recent studies, several approaches have been proposed

to address the problem of catastrophic forgetting in different

domains. Cha et al. in [4] propose a rehearsal-based contin-

ual learning algorithm that utilizes CRL and self-supervised

distillation to learn and maintain transferable representa-

tions, leading to improved performance in image classifi-

cation tasks. In a similar attempt, authors in [13], utilize

instance-level and class-level contrastive losses, along with

knowledge distillation and a spatial group-wise enhanced

attention mechanism, to maintain the inner-class assign-

ment information and alleviate catastrophic forgetting. A

novel incremental learning framework is proposed in [32],

which utilizes contrastive one-class classifiers to address

catastrophic forgetting in class incremental learning. Ad-

ditionally, [5] extends contrastive self-supervised learning

to be primarily based on exemplars and applicable to both

labeled and unlabeled data, enabling few-shot class incre-

mental learning.

This theory paves the way for an incremental learning

task, wherein the network endeavors to diminish the dis-

tance between the current and the previous task instances

in the latent space, while concurrently increasing the space

between all the other instances within the dataset, effec-

tively achieving a balance between stability and plasticity.

In line with this concept, the network aims to grasp the task-

specific representation of the instances in a way that im-

proves their distinguishability in the embedding space. This

facilitates the identification and differentiation of individual

instances, making the overall process simpler.

2.3. Federated learning

In contrast to traditional centralized machine learning

(ML) techniques, FL employs a training approach where

an algorithm is trained through multiple independent ses-

sions, with each session using its own distinct dataset. FL

enables multiple actors to collaboratively train a shared and

resilient ML model without the need to centralize their re-

spective data. Through this approach, FL effectively ad-

dresses concerns related to data privacy, security, and au-

thorization while allowing for the utilization of diverse and

heterogeneous data sources.

Initially, the research on FL has primarily concentrated

on enhancing communication efficiency and expediting

model updates. The groundbreaking work by McMahan

et al. [30] introduces a novel concept of averaging local

stochastic gradient descent updates (known as FedAvg) to

increase the overall amount of information used of each

client during communication rounds. To overcome chal-

lenges like low device participation and non-independent

and identically distributed (Non-IID) local data, several

studies have explored the use of online knowledge distil-

lation approaches. A novel approach for federated multi-

task distillation is introduced in [35], while Wu et al. [33]

presented a communication-efficient FL method, utilizing

adaptive mutual knowledge distillation and dynamic gradi-

ent compression to reduce communication costs. Similarly,

Li et al. [25] introduces a unified algorithmic framework

for Federated Distillation (FD), employing active data sam-

pling to reduce communication overhead.

Towards this direction, a recently introduced technique

has emerged, named FLD (Federated Learning Distillation),

which takes a different approach, by exchanging and aggre-

gating client model outputs. This alternative methodology

offers distinct advantages such as reduced communication

costs, flexibility in model architecture, and improved han-
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dling of Non-IID data distribution. Jeong et al. [19] pro-

pose an FLD scheme, where clients upload per label aver-

aged soft targets to train a conditional Generative Adver-

sarial Network (GAN). Li et al. [22] introduce a common

dataset accessible to all clients, training them on the pub-

lic dataset before their private data. Gong et al. [12] in-

troduce one-shot distillation where client models are fully

trained and then distilled to the server using attention maps

per class. These approaches combine distillation and aggre-

gation mechanisms to facilitate FL, while also considering

the integration of public or shared datasets.

Dealing with catastrophic forgetting in FL poses unique

challenges that have not been extensively explored com-

pared to other learning settings. To address this gap, re-

searchers have proposed a set of models [10, 9, 11] specifi-

cally designed for federated scenarios. These models incor-

porate techniques such as class-aware gradient compensa-

tion, semantic distillation, adaptive class-balanced pseudo

labeling, and forgetting-balanced semantic compensation.

Additionally, a recent study introduced a local model con-

trastive loss [23] to enhance individual party training. These

approaches effectively mitigate forgetting and provide solu-

tions for catastrophic forgetting in the FL context.

While there has been notable progress in Federated In-

cremental Learning, there is still untapped potential in ex-

ploring strategies that leverage the best solutions from the

literature on knowledge distillation and incremental learn-

ing and adapt them to the federated setting. The existing

research presents opportunities to develop novel techniques

that effectively address challenges in that field.

3. Proposed method

3.1. Problem statement

In a federated system, the data are inherently localized

to individual clients, and sharing them with other clients is

strictly prohibited. The objective of this study is to learn

from a continuously evolving stream of data that introduces

new classes in highly distributed environments. The data

are divided into a sequence of non-overlapping training

tasks, each representing a step of incremental learning. The

final goal is to continually develop a classification model

that incorporates knowledge from both current and previous

tasks across various federated nodes. After each task, the

model’s performance is evaluated on all the classes encoun-

tered so far, which is the union of classes from all previous

tasks.

The proposed methodology involves a federated incre-

mental learning scheme that combines multi-level repre-

sentation learning, knowledge distillation approaches cou-

pled with FL optimization algorithms, and CRL techniques

to address the challenges of evolving data domains, as de-

picted in Figure 1. For the cultivation of individual local

clients, the CIFAR-100[21] dataset is deployed, partitioned

in both a balanced and unbalanced manner to facilitate ex-

periments that cater to both IID and Non-IID conditions.

This work follows the common practice of using exem-

plar sets for incremental learning in computer vision. Ex-

emplars are representative instances of known classes, se-

lected from the training set. Instead of random sampling,

the herding strategy is employed to choose the most rep-

resentative exemplars for each class. Mean anchor images

from the previous rounds are computed, and the exemplar

set is formed by selecting class images that approximate

these mean anchors [31].

3.2. Federated Knowledge Distillation

3.2.1 Local Supervision Representation Learning

The local clients undergo supervised training using the

CIFAR-100 dataset, with each client being assigned a spe-

cific segment of the dataset. This assignment remains con-

sistent throughout all federated rounds, and the clients re-

ceive training on their allocated segments. The training sub-

set of the dataset is utilized for model training, while the val-

idation subset is used to evaluate and authenticate the per-

formance of each client’s trained models. Apart from each

client’s training and validation set, a communal dataset ex-

ists that is accessible to all clients. To train the clients’ net-

works, a classification head was added to map the feature

vectors to the total number of classes in the dataset; 100 in

the case of CIFAR-100. The Cross Entropy was deployed

as the loss function for the training process, and its formula

is shown below:

L(θ) = − 1
M

∑M
m=1

∑K
k=1 ymk log pmk (1)

where M is the total number of images, K the total num-

ber of classes, ymk the label of the m, k image and pmk

the probability of the class. The stochastic gradient decent

(SGD) [20] algorithm was chosen as the optimization strat-

egy.

Figure 2: The proposed Federated Multi-scale Representation

Knowledge Distillation scheme.

One drawback of the federated distillation scheme is the

small amount of information transmitted from the clients

to the data, since only the model’s output is transmitted to

the central server (i.e. last fully-connected layer). In order
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to mitigate this drawback, a scheme of multi-scale knowl-

edge distillation is adopted inspired by the work of [14].

More specifically, apart from the model’s output each client

transmits some intermediate outputs (i.e. hidden representa-

tion), where the number and the position of the intermediate

outputs can vary depending on the problem.

Different-level features can be extracted, let zNl =
fN
l (·), l ∈ (1, ..., L), where l are the different model lay-

ers, zNl is the intermediate output at layer l for the client

N , with size H ∗ W ∗ C and fN
l (·) is the subnetwork for

feature extraction up to the layer l. Then, the final form of

the feature map can be obtained by concatenating the W ∗C
height-pooled slices and the H ∗ C width-pooled slices for

hN
l :

Φ(zNlj−1
) =

[
1
W

∑W
w=1 z

N
lj−1

[:, w, :]
∣∣∣
∣∣∣ 1
W

∑H
h=1 z

N
lj−1

[h, :, :]
]

(2)

where [·| |·] denotes concatenation over the channel axis,

N is the number of clients, j is the federated round and

Φ(·) is the network function. The intermediate outputs are

calculated over the communal dataset, therefore all clients

extract features from the same subset. After all intermedi-

ate outputs of all clients are extracted, they are averaged per

client, Φ(zl) =
1
N

∑N
n=1 Φ(z

N
lr−1

). At the beginning of the

next federated round, for each client, the intermediate out-

puts are employed as soft labels in order to minimize the

Euclidean distance between the mean averaged representa-

tion of the clients and each client’s local representation. The

multi-scale knowledge distillation term is calculated as:

Lmulti−scaleKL
=

1

L

L∑
l=1

∣∣∣|Φ(zNlj )− Φ(zlj−1)
∣∣∣ | (3)

3.2.2 Global Distilled Supervision

As previously mentioned, a communal dataset is available

and accessible to all clients, following the common practice

in the literature ([22], [17], [7]). This communal dataset

serves as a reference point to address data heterogeneity

among the clients in the FL scheme. At the end of each

federated round, every client generates model outputs for

each sample in the common dataset. These outputs are then

transmitted to the server side and averaged across all clients

(illustrated in Figure 2), similar to the approach described

in 3.2.1. In the subsequent federated round, each client per-

forms knowledge distillation using the global anchors de-

rived from the common dataset, thus, ensuring knowledge

alignment between the clients. The knowledge distillation

term is calculated as follows:

LKL =
1

L

L∑
l=1

∣∣|Φ(oNj )− Φ(oj−1)
∣∣ | (4)

where ocr is the model output of client N at the federated

round j.

3.3. Incremental Learning

The proposed federate incremental scheme draws inspi-

ration from MOON [23], which is a simple and effective ap-

proach based on FedAvg with lightweight modifications in

the local training phase. However, there are significant dif-

ferences in our approach. We focus solely on representation

learning at each federated round using knowledge distilla-

tion. Our approach involves extracting stronger representa-

tions through a robust aggregation algorithm. In contrast to

MOON, we incorporate CRL, which is typically used for vi-

sual representations, on the aggregated global anchors and

their respective local versions (as presented in Figure 1).

This allows us to decrease the distance between the repre-

sentation learned by the local model and the global aggre-

gated representation of the previous task(s), while increas-

ing the distance between the representation learned by the

local model and the global aggregated representation of the

previous federated round of the same task. By incorporating

these elements, our approach enhances the learning proce-

dure and leverages the power of CRL in the federated set-

ting. Moreover, the global aggregated representation of all

previous tasks is employed to further enhance the learning

procedure.

In the federated incremental architecture, the primary

server undergoes training via a contrastive approach on the

dataset Xm = (xi
m, yim), i = 1, ...N , wherein the labels

are disregarded. Let us assume that node Ni is performing

the local training. Each image from the said dataset serves

as the anchor image xi
m. All of these images are subse-

quently passed through the network function Φ(·), and are

then projected into the latent space for the implementation

of CLR as delineated in [6]. During the initialization phase,

each node receives the global aggregated anchors at from

the server, which are common for all clients at the current

round. During this process, for each input image xi
m, we

extract the representation of xi
m, following the federated

knowledge distillation approach defined above, from the

current global aggregated anchors from the previous fed-

erated round aj−1
t as zj−1

t = Φaj−1
t (xi

m), the representa-

tion of xi
m from the aggregated global anchors of the pre-

vious incremental round at−1 as zt−1 = Φat−1(x
i
m), and

the representation of xi
m from the current local anchor be-

ing updated ajt as zjt = Φat(x
i
m). The feature maps are

harnessed for the calculation of the contrastive loss. The

formula of the loss is indicated below:

acon = − log
exp (sim(zj

t ,zt−1)/T )

exp (sim(zj
t ,zt−1)/T )+exp (sim(zj

t ,z
j−1
t )/T )

(5)

where T is the temperature that is a scaling factor used

to control the concentration of the output distribution, af-

fecting the hardness of the positives in the CLR framework.

Since the global model is expected to generate better rep-

resentations, our objective is to minimize the distance be-
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tween zjt and zj−1
t , indicating that the local model aligns

with the previous incremental round’s global anchor’s rep-

resentations. Additionally, we aim to maximize the distance

between zjt and zt−1, indicating that the updated local an-

chors are diverging from the previous round’s global an-

chor’s representations and retaining their own learned rep-

resentations. Through the implementation of contrastive

loss, the network strives to learn representations that induce

a proximity between the local image and the positive an-

chor global image in the embedding space, whilst ensur-

ing a separation between the local image and the previous

round’s global anchor image. The representations learned

in this manner would have the capacity to segment the la-

tent space in accordance with the context, without the true

comprehension of the task.

3.4. FedRCIL Algorithm

In this section, the complete flow of the described proce-

dure is presented. The entire process is divided into three

main algorithms, the Algorithm 1 describes the required

steps for training and updating the network in the main

server, while the other two define the actions for training

and updating the network in each local client (i.e. Algorithm

2 for local and Algorithm 3 for global supervision respec-

tively).

4. Experimental Results
4.1. Dataset settings

In this section, experimental results from the applica-

tion of the proposed FedRCIL scheme, using the CIFAR-

100 image classification dataset as a benchmark, are pre-

sented. The CIFAR-100 dataset was adapted to represent

both IID and Non-IID scenarios, capturing different FL set-

tings. In the IID setup, the data was balanced, while the

Non-IID setup represented an extreme case of data imbal-

ance. Like previous studies [38], Dirichlet distribution is

utilized to generate the Non-IID data partition among par-

ties, using a concentration parameter β. Both datasets con-

sisted of 100 categories, and a total of 10 participating nodes

were involved, with images distributed among them.

4.2. Implementation Details

4.2.1 Architecture and Parameters

The architecture of the proposed method employs a

distributed framework, where each local client utilizes

ResNet56 [15]. The ResNet56 model is chosen for its fast

training and satisfactory results. At each local client, the fi-

nal fully connected layer of the network is replaced with

a projection head to facilitate the Incremental CRL task,

allowing the transition of ResNet feature maps to a new

embedding space that supports the CLR scheme. Mean-

while, the local clients undergo supervised training using

Algorithm 1 FedRCIL Algorithm

Require: T is the number of communication rounds, N is

the total number of clients, θil represents the parame-

ters of the local models, Di
l are the separate datasets

for the local clients, Dex is the dataset of the exemplar

set, Dtest is the common testing dataset, and η is the

learning rate.

1: for each i from 1 to N do
2: Initialize local models θil
3: Prepare local datasets Di

l

4: end for
5: Prepare exemplar set Dex

6: Prepare common global dataset for evaluation Dtest

7: Server executes:
8: for each Incremental round t = 0, 1, 2, . . . do
9: for each Federated round j = 0, 1, 2, . . . do

10: for each client in parallel do
11: θlj ← ClientUpdate(Dl, θlj )
12: ztj , .. ← Extract representations from (θlj )
13: Send representation to server

14: end for
15: atj ← Aggregate Anchor representations

16: Distribute the updated global Anchors

17: for each client in parallel do
18: θlj+1

← KDUpdate(Dex, θlj , a,mu = 0.5)
19: end for
20: end for
21: Validate the updated distillated models on Dtest

22: end for

Algorithm 2 ClientUpdate Function

1: ClientUpdate(Dl, θ): � Run on specific client

2: for each local epoch i from 1 to E do
3: for each batch in Dl do
4: θl ← θl − η∇L(θl, labels) � Update the client

model with Eq. 1

5: end for
6: end for
7: return θl

the proposed multi-loss scheme, involving three intermedi-

ate outputs corresponding to the outputs of three ResNet

layers. The SGD method is employed with a learning rate

of 0.1, the batch size of the system is 64, the mu and

T are set equal to 0.5 and mc equals to 0.1 . The local

models are trained for 300 epochs to ensure comprehensive

learning and convergence. Python 3.7 and PyTorch (ver-

sion 1.7.0) environments are employed for the impelemnta-

tion of the deep learning models. The code is available at

https://github.com/chatzikon/FedRCIL.
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Algorithm 3 DistillationUpdate Function

1: KDUpdate(Dex, θl, a, mu): � Run on specific client

2: for each batch in Dex do
3: lmul � Compute Multi Scale loss with Eq. 3

4: ldis � Compute Distillation loss with Eq. 4

5: lcon � Compute constrastive loss with Eq. 5

6: L = mc ∗ lmul + ldis +mu ∗ lcon
7: θl ← θl − η∇L(θl) � Update the client model with

aggregated loss L
8: end for
9: return θl

4.2.2 Federated setting

The training paradigm for the suggested FL system which

comprises a centralized server and 10 local clients, involves

6 federated rounds without incremental learning. In each

round, the local clients individually undergo training for 50
epochs without any inter-client communication. The final

evaluation of the local models is performed using the test

set of the CIFAR-100 dataset. The training set is divided

into a common set accessible to all clients (20% of the train

set), while the remaining 80% is divided among the clients.

In the case of incremental learning, the epochs without any

inter-client communication are 10 and the federated rounds

are 30. The incremental learning process consists of 5 dif-

ferent tasks, each one with 20 unique classes. Each task

has a training period of 6 federated rounds that constitute

an incremental round. The common set mentioned above is

employed as an exemplar set, with a steady size but with a

varying number of samples per class (i.e. as new tasks ar-

rive, less samples per class exist), employing the approach

mentioned in Section 3.1.

4.2.3 Baselines

To validate the effectiveness of FedRCIL comprehensively,

a comparative performance analysis was conducted on two

distinct configurations. Initially, benchmark experiments

were undertaken within a fully-supervised FedAvg frame-

work, in both IID and Non-IID scenarios. Furthermore, the

proposed approach was compared with a scheme of local

isolated clients (without communication among them) and

with a baseline federated distillation approach.

4.3. Performance Evaluation

This section provides a summary of the results obtained

through the application of the proposed scheme in several

distinct scenarios under various learning settings. In an at-

tempt to showcase the distinctive characteristics of our ar-

chitecture, we conducted direct comparisons with the pro-

posed baseline methods, depicted in Table 2. However, it

was not possible to compare with other methods from the

literature, except for FedAvg, due to the difficulty of adapt-

ing state-of-the-art techniques to the specific problem we

are addressing.

4.3.1 Representation learning setting

The accuracy results presented in Table 1 investigate var-

ious concepts associated with extracting multi-level and

multi-scale representations from the local clients. It is

shown, that the FLDmB
, where each extra loss is applied

to the part of the model before it, back-propagating with

layer 1 loss first and layer 3 loss last, achieved the highest

accuracy of 38.06%. Similarly, FLDmC
, with losses back-

propagating with layer 3 loss first and layer 1 loss last, ob-

tained a slightly lower accuracy of 37.82%. On the other

hand, FLDmA
, where all losses apply to the whole net-

work, resulted in the lowest accuracy of 32.03%. These

findings highlight the significance of selectively applying

additional losses to specific parts of the model and the im-

portance of the direction of back-propagation. The results

clearly demonstrate that the proposed method outperforms

the conventional cross-entropy loss approaches.

Multi-loss concept Accuracy

FLD 28.41

FLDmA 32.03

FLDmB 38.06

FLDmC 37.82

Table 1: FLDmA : All losses apply to the whole network

FLDmB : Each extra loss apply to the part of the model before it,

backprop from layer 1 to layer 3 FLDmC : Each extra loss apply

to the part of the model before it, backprop from layer 3 to layer 1

4.3.2 Federated distillation learning setting

In relation to a comparison with the baseline methods,

the proposed approach, achieved the highest accuracy of

38.06%, suggesting that leveraging a shared dataset and

optimizing multiple objectives simultaneously enhances the

learning process. On the other hand, isolated clients where

each client trains independently, had the lowest accuracy of

23.29%, of course this was something the we expected, but

it highlights the added value of the proposed approach. FL

without a common dataset also performed relatively poorly,

with an accuracy of 20.61%. Concerning the investigated

FLD schemes, the findings suggest choice of layer output,

and the presence of a common dataset can influence the

effectiveness of distillation. As discernible from Table 2,

when juxtaposed with the FedAvg, the proposed approach

provides superior results with relative improvement over the

baseline of 11.39%. These findings highlight the impor-

tance of collaboration and the potential benefits of utilizing

shared data and optimized loss functions in FL, ultimately

leading to improved accuracy in image classification tasks.
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Method Common set Accuracy

FL(FedAvg) 34.17

Local Isolated Clients 23.29

FLDl 20.61

FLDl−1 � 19.71

FLDl � 28.41

FedRCIL (Proposed) � 38.06

Table 2: Comparative evaluation with baseline methods and vari-

ous distillation schemes.

4.3.3 Incremental learning setting

Table 3 presents accuracy results for the proposed method

at different mu settings, which represent the weight of

the contrastive loss in the learning process. Utilization of

the contrastive learning mechanism, results in significantly

higher accuracy, contrary to the case that mu equals to 0,

resulting in a significant drop in accuracy. In particular, the

results indicate that the accuracy decreased by around 20%
when moving from 1 task to 5 tasks. This significant drop

highlights the superior added value of the proposed incre-

mental mechanism. On the other hand, in the other three

cases where mu values are higher (i.e. 0.25, 0.5, and 1), the

results remain favorably comparable.

mu task=1 task=5

FedRCILmu=0

29.54

10.96

FedRCILmu=0.25 26.07

FedRCILmu=0.5 26.79

FedRCILmu=1 25.42

Table 3: Experiments with different values for the contrastive loss

coefficient mu.

In an attempt to investigate the impact of knowledge

retention on performance, we intentionally increased the

number of buffers per task progressively from 1 to 4, as

depicted in Table 4. Keeping only the most recent task in-

stance (buffer size b = 1) yields the lowest accuracy of

15.76%, indicating its inferior performance. However, as

the buffer size increases, accuracy increases significantly,

with buffer size b = 4 resulting in 26.79%. Buffer size val-

ues of 2 and 3 strike a balance between retaining knowledge

and model performance, achieving accuracies of 19.52%
and 21.12%, respectively. These findings emphasize the

importance of managing buffer size in incremental learning;

storing an adequate number of previous task instances can

positively impact performance, while storing only the most

recent one results in the worst accuracy. It is evident that

balancing the buffer size is crucial for enhancing knowl-

edge transferability and optimizing the proposed method’s

effectiveness in incremental learning settings.

Non-IID data typically contain diverse patterns and vari-

ation across different nodes, which inherently lead to chal-

lenges in learning a generalisable model. In that con-

text, Table 5 presents accuracy results for three different

Buffer Accuracy

FedRCILb=1 15.76

FedRCILb=2 19.52

FedRCILb=3 21.12

FedRCILb=4 26.79

Table 4: Experiments with different buffer size (number of previ-

ous task models employed as positives at the contrastive learning).

methods: FLDc, FLDmc, and the proposed FedRCIL,

at various beta values (0.25, 0.5, 0.75, and 1), which con-

trol the non-iidness of the dataset. As beta increases, all

methods generally show improved accuracy. The basic

FLDc method achieves the lowest accuracy, ranging from

16.45% (beta = 0.25) to 22.10% (beta = 1). Introduc-

ing multi-loss (FLDmc) leads to higher accuracy across

all beta values, ranging from 18.48% (beta = 0.25) to

28.79% (beta = 1). Notably, the proposed incremental

FedRCIL scheme demonstrates promising performance,

achieving comparable results of 16.62% with an acceptable

decrease of around 10% compared to the IID case. This out-

come is particularly impressive considering the challenging

evaluation setting involved in incremental learning tasks.

beta 0.25 0.5 0.75 1 IID

FLDc 16.45 20.01 20.64 22.10 28.41

FLDmc 18.48 24.07 25.86 28.79 38.06

FedRCIL 10.22 13.29 14.82 16.62 26.79

Table 5: Experiments with Non-IID data, for different beta values.

Methods indicated with subscript ‘m’, and ‘c’ utilize multi-loss,

and common dataset, respectively.

5. Conclusions
This work presented a holistic approach to mitigate

catastrophic forgetting and maximizing knowledge reten-

tion in computer vision during incremental learning, by in-

tegrating CRL, FL and rehearsal-based knowledge distilla-

tion techniques. It provides a comprehensive solution for

continual learning in scenarios where FL has not been ex-

tensively studied, facilitating the learning and preservation

of transferable representations. The comprehensive exper-

imentation conducted, provides valuable insights into the

proposed learning scheme, particularly in highly distributed

scenarios. This research showcases its ability to create ro-

bust local representations, effectively replacing the compu-

tationally expensive transmission of bulky models, while

it also managed to reduce the number of communication

rounds by incorporating aggregated knowledge from neigh-

boring nodes and previous tasks, resulting in satisfactory

performance levels.
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