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Abstract

This study investigates the challenging task of training
visual models with very few available data, further compli-
cated by the distribution being imbalanced and scattered
across nodes. To address this diverse availability of train-
ing data in different federated settings, a customized self-
supervised learning approach tailored specifically for each
scenario is being proposed. In particular, a hybrid ap-
proach combining self-supervised and supervised learning
techniques under a federated umbrella has been utilized at
both the global and local level, harnessing the potential of
unlabeled data. Extensive experiments provide a detailed
analysis of the problem at hand and demonstrate the par-
ticular characteristics of the proposed learning schemes
in distributed scenarios. The overall proposed approach
achieves superior recognition performance in the currently
broadest public dataset, surpassing all baselines by a sub-
stantial margin. The proposed solution can operate effi-
ciently at a local level without prior knowledge of the char-
acteristics or distribution of data across nodes.

1. Introduction

The problem of learning visual models from very few

available training data and scattered distribution poses a sig-

nificant challenge in the field of Machine Learning (ML).

The majority of Deep Learning (DL) algorithms in general

require a substantial amount of data to achieve the desired

performance. However, when it comes to real-world appli-

cations, the available data sources are typically limited and

often fragmented, making it challenging to apply traditional

learning techniques. Many research groups have dedicated

resources to find reliable solutions [8], but despite the abun-
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dance of published work, the problem of learning mean-

ingful representation from sparse data still poses significant

difficulties.

To achieve truly robust recognition performance in vari-

ous visual analysis tasks where limited data are involved,

it is essential to address several key issues. These in-

clude ensuring data quality and accurate annotation, miti-

gating the effects of overfitting and promoting generaliza-

tion, handling imbalanced class distributions, etc. [5]. Ini-

tially, the research efforts focused on combinations of data

pre-processing techniques, domain adaptation approaches

and regularization methods [37, 29, 36, 45, 6, 34, 41, 33].

While these strategies were effective to some extent, recent

advances in representation learning techniques [2, 43, 3]

have significantly boosted the field, literally transforming

the way visual analysis is approached. These techniques en-

able the extraction of meaningful and discriminative repre-

sentations from limited data, enhancing the model’s gener-

alization power, especially on unseen samples. As a result,

the extracted representation can better capture the inherent

patterns within the data, enabling models to leverage lim-

ited data more effectively. This, in turn, leads to improved

performance and robustness in achieving the desired task.

While there has been extensive research on applying rep-

resentation learning to centralized data settings, the explo-

ration of its application to federated datasets with incom-

plete annotations and scarce data samples is still relatively

limited, due to data privacy concerns, data and system het-

erogeneity constraints, and limited annotations bottlenecks.

Research groups have devoted resources for approaches

specifically designed for federated settings, leveraging the

power of representation learning while respecting the de-

centralized nature of data. These approaches often involve

a range of learning techniques, such as self-supervised,

semi-supervised, unsupervised learning, and transfer learn-

ing [44, 39, 26, 18, 11]. In the context of federated learning
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(FL), the principal impediment resides in the sensitivity of

data, rendering it non-transferable from local users to the

central server. Moreover, an associated issue pertains to the

quantity of annotated data. The central server may house

semi or fully-annotated data, or data that is an amalgama-

tion of different datasets.

In traditional FL a critical limitation faced by local nodes

pertains to their constrained resources, both in terms of

data processing and storage capabilities. As a result of

these constraints, the deployment of both self-supervised

and semi-supervised learning methodologies at the local-

level becomes infeasible. This challenge accentuates the

pressing need for an innovative approach within FL. Such

an approach should have the flexibility to alternate between

and synergistically combine self-supervised and supervised

learning techniques, specifically tailoring them to the dis-

tinct dynamics of both local and global FL rounds. The

evolution and integration of these methods can potentially

optimize the FL process, harnessing the strengths of both

self-supervision and traditional supervision within the fed-

erated context.

Through the application of self-supervised learning

methodologies in our approach, it becomes plausible to sur-

mount the challenges posed by non-annotated data. The

proposed specific methodology, we harnessed Constrastive

Learning (CLR) [2] with the objective of discerning the op-

timal representations by drawing contrasts between each in-

stance of the dataset and the remainder thereof. This train-

ing modality does not necessitate labels for the data and

yields exceptional outcomes, particularly given that the data

requisitioned for training do not demand any annotation ef-

fort whatsoever.

In a paradigm involving fully-supervised training of

the central server, it is incumbent that the data are fully-

annotated with a high degree of label quality. However,

when employing self-supervised training, there is no re-

quirement for fully annotated data within the central server,

hence enabling us to capitalize on all available data situated

within the central server to construct a highly potent feature

extractor that learns data representations independent of the

need for classes.

Contrastingly, local clients acquire representation predi-

cated on the specific annotated dataset that is accessible to

them; hence each client learns the optimal representation

dedicated to the specific dataset. By possessing a locally

fine-tuned model for each distinct local dataset, which when

amalgamated on the central server and combined with the

powerful feature extractor located on the centralized server,

the updated model will embody knowledge from each client

and from the expansive dataset in the central server.

The main contributions of this work are summarized as

follows:

(a) A novel self-supervised learning approach that em-

Figure 1: The proposed Federated Learning (FL) scheme utilizes a

centralized server to create and share the global model, while sev-

eral local nodes participate asynchronously in the training process.

powers the central server to exploit every piece of
data within its possession, by leveraging CLR tech-

niques to explore meaningful representation and ex-

tract informative features at global level even in sce-

narios where labeled data are limited.

(b) A hybrid FL scheme that seamlessly blends self-
supervised and supervised techniques, adapting

them to the unique dynamics of local and global learn-

ing rounds within the federated context.

(c) Validation of the proposed approach by conduct-
ing extensive comparisons with a fully-supervised
learning process within the same FL scheme,

thereby demonstrating the efficacy of our combination

of contrastive and supervised learning on two standard

benchmark databases. Extensive experimentation and

comparative evaluation highlights the advantages of

the proposed schemes under various federated scenar-

ios.

The remainder of this paper is organized as follows: Re-

lated work is reviewed in Section 2. The proposed hybrid

Federated Self-Supervised learning scheme is presented in

Section 3. Implementation details along with experimental

results are discussed in Section 4 and conclusions are drawn

in Section 5.

2. Related Work
2.1. Self-supervised Learning

It is undeniable that there are many annotated datasets

available nowadays. However, it is clear that we cannot

constantly access full databases relevant to every imagin-

able work. The use of supervised learning approaches,

which primarily rely on the availability of properly anno-

tated datasets, is severely constrained by such obstacles.

Self-supervised learning techniques, in contrast, have the

advantage of not requiring annotations, demonstrating its

applicability to a variety of issues. These approaches have
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shown tremendous promise when applied to semi-annotated

or non-annotated data, providing outcomes that are, in fact,

notable. They achieve the later by creating a self-supervised

job for learning.

Auto-encoders [15] are one such classic example. When

compared to the lack of annotated data, they prove to be

especially useful. In order to decode the latent representa-

tion and return to the original input, autoencoders transpose

the input into a latent space representation first. Replicating

the input as accurately as possible is the main goal. Despite

being an unsupervised scheme, Generative Adversarial Net-

works (GANs) [9] can function in a self-supervised manner.

By learning to perform tasks such as predicting the rotation

of an image [4] or filling in missing parts of an image [35],

the model discovers rich feature representations of the data

without requiring explicit labels, which can then be used

for solving demanding computer vision tasks under limited

data settings.

Recently, similarity learning techniques have attained

particular focus. More specifically, Bootstrap Your Own

Latent (BYOL) [10] is a self-supervised learning algorithm

that leverages two neural networks, namely a target net-

work and an online network. Instead of relying solely on

negative samples for learning, BYOL trains the online net-

work to align its predictions with the output of the target

network, which is a slow-moving average of the online net-

work, thereby learning representations from different aug-

mentations of the same image.

2.2. Contrastive Learning

CLR serves as a potent instrument within the realm of

self-supervised learning [13, 1, 40]. Its fundamental aim

revolves around crafting representations that induce a ten-

dency for similar instances to congregate in the embedding

space, while simultaneously propelling dissimilar instances

to be dispersed at a greater distance. To fulfill this aspi-

ration, every instance undergoes transformation, yielding a

variant distinct from the original yet preserving the underly-

ing principle intact. This is facilitated through the deploy-

ment of augmentations that possess the ability to modify

the appearance of the instance without distorting its foun-

dational principle [17].

This theory paves the way for a self-supervised learning

task, wherein the network endeavors to diminish the dis-

tance between the original and the augmented instances in

the latent space, while concurrently increasing the space be-

tween all the other instances within the dataset. Within this

postulate, the network strives to comprehend the represen-

tation of the instances in a manner that enhances their sep-

arability in the embedding space, thereby simplifying the

process of discerning distinct instances.

2.3. Federated Learning

FL is an innovative ML approach that leverages decen-

tralized data and computational resources to deliver more

tailored and flexible applications while upholding the pri-

vacy of users and organizations. FL has demonstrated ex-

ceptional results in numerous visual analysis tasks, such as

image classification, object detection and action recognition

[25, 12, 32], indicating its robustness and effectiveness in

these areas.

The research on FL has focused on increasing commu-

nication efficiency and accelerating model updates. McMa-

han et al.’s [27] pioneering work introduced the concept of

averaging local stochastic gradient descent updates to in-

crease the calculated quantity of each client between com-

munication rounds. To address low device participation,

non-independent and identically distributed (Non-IID) lo-

cal data, other studies, employ online knowledge distillation

approaches, also called codistillation, for communication-

efficient FL. Unlike transferring model updates, codistilla-

tion focuses on transmitting the local model prediction on

a public dataset that is accessible to multiple clients. This

method proves beneficial in reducing communication costs,

particularly when the size of the local model exceeds the

size of the public data[24, 38, 30]. In a recent study [23],

researchers introduced a novel approach, named as MOON,

where they propose a local model constrastive loss compar-

ing representations of global and local models from succes-

sive FL rounds. This technique aims to improve the train-

ing of individual parties by conducting CLR in the model-

level, specifically in the feature representation space, push-

ing the current local representation closer to the global rep-

resentation and further away from the previous local one.

Similarly, authors in [28] proposed a distillation- based reg-

ularization method, named FedAlign, that promotes local

learning generality while maintaining excellent resource ef-

ficiency.

In an attempt to leverage the unlabeled data available

across multiple nodes, while utilizing the limited labeled

samples, several recent studies explored novel algorithms,

ranging from self-training, co-training to knowledge distil-

lation. Authors in [16] proposed a novel semi-supervised

method, termed as FedMatch, which learns inter-client con-

sistency between nodes, and decomposes model parame-

ters to reduce interference between both supervised and

unsupervised tasks. Zhang et al. [44] proposed an unsu-

pervised representation learning algorithm, called FedCA,

where each client performs unsupervised learning on its

local data, leveraging techniques such as CLR to capture

meaningful patterns and representations. The learned rep-

resentations are then aggregated and refined at a central

server, resulting in a powerful and comprehensive represen-

tation model that encapsulates the knowledge from all dis-

tributed sources. In a similar approach, Han et al. [11] in-
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troduced FedX, an unsupervised FL framework that learns

unbiased representation from decentralized and heteroge-

neous local data, by employing a two-sided knowledge dis-

tillation with CLR as a core component. Its adaptable ar-

chitecture can be used as an add-on module for existing

unsupervised algorithms in federated settings. Moreover,

two federated self-supervised learning frameworks for im-

ages with limited labels was proposed in [39], based on

federated CLR with feature sharing (FedCLF). In contrast

to previous approaches that assume labeled data are avail-

able at the client-side, Long et al. [26] introduced FedCon,

a novel framework designed to address scenarios where lo-

cal client data is unlabeled and only the server has access

to labeled data. FedCon tackles this challenge by employ-

ing a contrastive network architecture, which consists of

two subnetworks, enabling effective handling of the unla-

beled data at the client-side. Recently, Khowaja et al. [18]

proposed the SelfFed framework that operates in two dis-

tinct phases. The initial phase involves self-supervised pre-

training, where a decentralized approach is employed to

train a Swin Transformer-based encoder. In the subsequent

phase, referred to as fine-tuning, the framework incorpo-

rates a contrastive network and introduces a novel aggrega-

tion strategy. This phase aims to refine the pre-trained en-

coder using limited labeled data specific to the target task.

While these approaches have made significant contribu-

tions to FL with limited labeled data, they have certain lim-

itations. One limitation is the reliance on labeled data at

either the client-side or the server-side. Another limita-

tion is the lack of exploration of meaningful representations

and informative features at a global level. In contrast, the

proposed method introduces a novel self-supervised learn-

ing approach that enables the central server to harness the

entirety of available data within its possession. By utiliz-

ing CLR techniques, this study explores strong represen-

tations and extracts informative features at a global level,

even in scenarios where labeled data are limited or unavail-

able. This allows for more effective utilization of data and

enhances the performance and generalization capabilities of

the final model.

3. Proposed learning schemes
Problem statement: In a federated system, data are in-

herently localized to individual clients and the dissemina-

tion of this information to other clients is strictly prohibited.

On the other hand, the central server, effectively serving as

a simulated environment for the local clients, has the ability

to leverage a substantial volume of data for training pur-

poses, thereby accommodating a broad array of data varia-

tions. The goal is to train each local model separately to its

own subset of data, while the centralized server is trained

in a self-supervised manner on vast database, with high di-

versity, regardless whether the data are annotated or not,

whereas the complete system of the local clients maintain

uniformity in the overall accuracy ascertained in the com-

mon test set.

In the methodology that we advocate, a hybrid learning

scheme involving self-supervised and supervised training

strategies is employed. Owing to the substantial magnitude

of images contained within the Tiny-ImageNet[21] dataset,

it serves as an ideal candidate for the training of the central

server through the implementation of unsupervised CLR.

On the other hand, for the cultivation of individual local

clients, the CIFAR-100[20] dataset is deployed, partitioned

in both a balanced and unbalanced manner to facilitate ex-

periments that cater to both IID and Non-IID conditions.

CIFAR-100 and Tiny-ImageNet are used since they are con-

textually similar as shown in figure 2.

3.1. FedLID Local Supervision

The local clients are trained in a supervised fashion uti-

lizing the CIFAR-100 dataset. A distinct segment of the

dataset is allocated for each client that remains consis-

tent throughout all federated rounds, on which they receive

training. The training portion of the dataset is utilized for

the purpose of training, while the validation subset serves to

authenticate each of the clients’ models. Notably, the vali-

dation set is communal, hence accessible to all clients. For

the purpose of training the clients’ networks, a classifica-

tion head was appended that maps the feature vectors to the

total number of classes present in the dataset, amounting to

100. Cross Entropy was deployed as the loss function for

the training process, the formula is displayed below:

L(θ) = − 1

N

N∑

n=1

C∑

j=1

yij log pij (1)

where N is the total number of images, C the total num-

ber of classes, yij the label of the i, j image and pij the

probability of the class. Adam[19] algorithm was chosen as

the optimization strategy.

3.2. FedLID Global Supervision

In the federated architecture, the primary server un-

dergoes training via a contrastive approach on the dataset

Xm = (xi
m, yim), i = 1, ...N , wherein the labels are dis-

regarded. Each image from the said dataset serves as the

anchor image xi
m. To generate a slightly variant, positive

image denoted xi
p, image augmentations are utilized. Both

of these images are subsequently passed through the net-

work function Φ(·), and are then projected into the latent

space for the implementation of CLR as delineated in[2].

The embedding dimensions of the feature map encom-

pass 126 channels. For the purpose of projection, the final

fully connected layer of the model is omitted, and a novel
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projection head is affixed that maps the 512-dimensional la-

tent space to a 126-dimensional space employing a Recti-

fied Linear Unit (ReLU)[31] activation function. The fea-

ture maps of both the anchor image Φi
m = zi and the posi-

tive image Φi
p = zj are harnessed for the calculation of the

contrastive loss. The formula of the loss is indicated below:

Li,j = log
exp (sim(zi, zj)/T )∑2N

k=1,[k �=i] exp (sim(zi, zk/T )
(2)

where T is the temperature that is a scaling factor used

to control the concentration of the output distribution, af-

fecting the hardness of the positives in the CLR framework.

Through the implementation of contrastive loss, the net-

work strives to learn representations that induce a proxim-

ity between the anchor image and the positive image in the

embedding space, whilst ensuring a separation between the

anchor image and all other images within the dataset. The

representations learned in this manner would have the ca-

pacity to segment the latent space in accordance with the

context, without the true comprehension of the class.

3.3. Federated aggregation

Optimization strategies and in particular aggregation al-

gorithms play an important role in FL as they are respon-

sible for combining the knowledge from all devices/nodes

while respecting data’s privacy. Although adapting FL to

fully-supervised federated schemes seems to be straightfor-

ward, shifting to more complex schemes that involve fur-

ther self-supervision steps, as the ones mentioned earlier,

can prove to be more challenging than anticipated. Prior to

the application of the proposed self-supervision step, feder-

ated optimization is realized for the locally fully-supervised

trained models (Figure 1). In particular, the broadest ag-

gregation mechanism, namely FedAvg, has been followed,

examined in detail and adapted to the specific scenarios.

Firstly, the server distributes the initial version of the model

to each node for training on local data. This first ver-

sion can either be pre-trained on a predefined dataset (i.e.

ImageNet1k[7]), or be initialized randomly. In each round,

the algorithm performs a set of local model updates (i.e.

cross-entropy loss) on a subset of nodes, followed by a

server-side aggregation task, trying to minimize the fol-

lowing objective function, which is actually the sum of the

weighted average of the clients’ local errors, where Fk is the

local objective function for the kth device and pk specifies

the relative impact of each device:

min
w

=

N∑

k=1

pkFk(w) (3)

In the final step, the updated global model is forwarded

to the local nodes for another round of training. The pro-

cess is continuing until the global aggregated model is fully

trained and achieves the desired performance.

3.4. FedLID Algorithm

In this section, the complete algorithm of the described

procedure is presented. The entire process is divided into

two main algorithms, the first one describes the required

steps for training and updating the network in the main

server, while the second one defines the action for training

and updating the network in each local client.

Algorithm 1 FedLID Algorithm

Require: C is the total number of clients, θg represents

the parameters of the global model, θil represents the

parameters of the local models, Di
l are the separate

datasets for the local clients, Dg is the dataset of the

central server, Dval is the common validation dataset,

and η is the learning rate.

1: Initialize global model θg
2: for each i from 1 to C do
3: Initialize local models θil
4: end for
5: Prepare global dataset Dg

6: for each i from 1 to C do
7: Prepare local datasets Di

l

8: end for
9: Prepare common local dataset for validation Dval

10: Server executes:
11: for each Federated round t = 0, 1, 2, . . . do
12: for each client in parallel do
13: θlt+1

← ClientUpdate(Dl, θlt)
14: end for
15: θg ← FedAvg(θl)Eq.3
16: for each global epoch i from 1 to G do
17: for each batch in Dg do
18: θg ← θg − η∇L(θg) � Update the global

model with Eq. 2 (Contrastive Loss)

19: end for
20: end for
21: Distribute the updated global model to the clients

22: Validate the updated models on Dval
23: end for

Algorithm 2 ClientUpdate Function

1: ClientUpdate(Dl, θ): � Run on specific client

2: for each local epoch i from 1 to E do
3: for each batch in Dl do
4: θl ← θl − η∇L(θl, labels) � Update the client

model with Eq. 1

5: end for
6: end for
7: return θl
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Figure 2: Images from Tiny-ImageNet (left) and the CIFAR-100

(right), showcasing the contextual similarities of the two datasets.

4. Experimental results
4.1. Data settings

Within this segment, experimental results from the ap-

plication of the proposed Federated Self-Supervised learn-

ing strategies are presented. The evaluation process utilized

the CIFAR-100 image classification dataset as a benchmark.

This dataset was adapted into both IID and Non-IID varia-

tions to reflect different FL scenarios. One is replicating

the balanced data, i.e. IID dataset, while the other is the ex-

treme example of a Non-IID dataset. From both datasets, a

set of 100 categories was used and with the total number of

participating nodes being 10, among which the images are

to be distributed.

4.1.1 IID and Non-IID Settings

Like previous studies [42], the parameter α > 0 controls the

identicalness among participants. Different α values were

tested, where with α → ∞, all participants have identi-

cal distributions and α → 0, each participant has exam-

ples from only one class. To support IID setting, the dataset

was divided with medium heterogeneity by setting α = 1.

Therefore, a node can have images from any number of

classes. In contrast, for the case of the Non-IID set, the orig-

inal CIFAR-100 dataset was divided, with higher level of

heterogeneity by setting α = 0.5. Here, nodes tend to have

significant number of samples from some classes and few or

no samples for the other classes. Each node randomly sam-

pled 1
10 of training and validation data respectively, while

the test set data were left out for the final system evaluation,

both at global and local level.

4.1.2 Image augmentations

For the CLR scheme, a data augmentation strategy as the

one in SimCLR[2] is adopted. Initially, a stochastic crop

of the image is procured, which is subsequently subjected

to a random horizontal flip. This is then followed by arbi-

trary distortion of brightness, contrast, hue, and saturation

parameters, complemented by an optional grayscale trans-

formation. Subsequently, a Gaussian blur filter is adminis-

tered as the terminal step of the augmentation process. The

image is ultimately resized to dimensions of 224 × 224 and

undergoes normalization.

4.2. Implementation details

4.2.1 Architecture and Parameters

The architecture of the proposed method employs a dis-

tributed framework, composed of a Convolutional Neural

Network (CNN)[22], specifically ResNet18[14] is used for

experiments because it is shallow, fast in training and has

satisfactory results, that is deployed both at the centralized

server and the local clients, albeit with unique modifications

for each entity. The step-by-step process of the training of

the federated scheme is illustrated in Algorithm 1. For the

central server, the final fully connected layer of the network

is replaced with a projection head, enabling the transition of

the ResNet feature map to a new embedding space, thereby

facilitating the CLR scheme. Conversely, the local clients

are trained via supervision, resulting in the substitution of

the final fully connected layer with a classification head that

maps the feature vectors to the corresponding classes, the

full algorithm of the local supervision is depicted in 2. Re-

garding the optimizer, Adam is employed with a learning

rate of 0.001 and the batch size of the system is 256. It is

crucial to note that the ResNet model retains knowledge ac-

quired from the ImageNet1k[7], as it operates on the basis

of pre-trained weights. To facilitate an unbiased comparison

between the proposed approach and leading-edge federated

systems, additional experiments are conducted employing

the ResNet50 architecture.

4.2.2 Federated setting

In the context of the training paradigm for the suggested

FL system – a system comprising both a centralized server

and 10 local clients – a comprehensive training period of

10 federated rounds is undertaken. Within each of these

rounds, the local clients individually embark on a training

process spanning 10 epochs, operating in isolation without

any inter-client communication. Upon completion of their

respective training, the local clients communicate with the

central server, transferring their uniquely derived weights.

This information is assimilated by the central server which

proceeds to aggregate the weights and undergoes a train-

ing cycle for 60 epochs prior to disseminating the updated

model to the local clients. Post distribution, the refreshed

model undergoes an evaluation process leveraging the com-

mon test set accessible to all clients.

4.2.3 Baselines

To affirm the validity of FedLID as unequivocally as possi-

ble, a comparative performance analysis across two distinct

configurations was executed. Initially, benchmark experi-

ments were undertaken within a fully-supervised federated

framework, in both IID and Non-IID scenarios, wherein
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the volume of data accessible on the central server pro-

gressively reduced in increments of 20%, ranging from

100% to 20%. Subsequently, a comparative evaluation was

conducted against the following cutting-edge benchmarks:

FedCA and FedSimCLR [44].

4.2.4 Training Setup

The proposed federated system’s training was executed on

a single computer, outfitted with a GeForce RTX 3090
(VRAM 24 Gbs) and furnished with 32 Gbs of RAM.

4.3. Performance Evaluation

4.3.1 IID Setting

The presentation of results, under circumstances of equi-

tably distributed data amongst the local clients, is delineated

below. As discernible from Table 1, when juxtaposed with

the fully-supervised framework, FedLID provides superior

results (47.52%) with relative improvement over the base-

line of 8.05%, even when pitted against the optimum case

scenario of supervision (43.98%), which implies the utiliza-

tion of 100% of the data situated within the central server.

As anticipated, the overall accuracy experiences a decline

with a diminishing quantity of training data in the server.

Consequently, in situations where the central server houses

extremely limited annotated data, the proposed method sur-

passes the conventional supervised FL. Figure 3 shows the

impact that the training on the server has in the overall ac-

curacy of a client. The underlying cause for the observed

outcome is that each local client independently assimilates

the representation of its specific training subset. However,

when these learned representations converge on the central

server, this disparate information is consolidated. Coupled

with the CLR setting deployed on the server, these com-

bined representations converge closer to the authentic data

distribution of the test set.

Percentage of Data in the

Central Server

Average Accuracy over the

Local Clients

20% 42.15%

40% 41.79%

60% 42.74%

80% 43.81%

100% 43.98%

FedLID(Ours) 47.52%

Table 1: Comparison of our method with different percentages of

available data in the central server. The data in the local clients are

divided equally.

It is subsequently discerned that FedLID surpasses the

performance metrics of contemporary state-of-the-art algo-

rithms as shown in Table 2. This superior performance of

47.52% is achieved even when utilizing shallower network

architectures and a larger number of clients, both factors

contributing to reduced training data for each individual lo-

cal client.

Method Architectute Clients CIFAR100

FedSimCLR ResNet50 5 34.18%

FedCA ResNet50 5 39.47%

FedLID(Ours) ResNet18 10 47.52%

Table 2: Average Accuracy over the local clients on CIFAR-100

udner the IID setting with α = 1.

4.3.2 Non-IID Setting

Non-IID data typically contain diverse patterns and varia-

tion across different nodes, which inherently lead to chal-

lenges in learning a generalisable model. In that context,

FedLID achieves superior results (48.88%), as depicted in

Table 3, by leveraging the inherent structure and relation-

ships within the global data, with relative improvement of

39.02% over the baseline system. Figure 4 demonstrates

the effect that the main server has in performance of the

client. By pretraining the global aggregated model on a

self-supervised task and subsequently fine-tuning it on the

target local supervised task, the model can effectively ex-

ploit the knowledge gained at global level while adapting

to the specific characteristics of the Non-IID dataset, result-

ing in improved accuracy and generalization at local level.

It is entirely plausible in practical federated systems that

the data distributed among local clients may not be evenly

distributed, and the server data could be semi-annotated or

non-annotated. Under such realistic conditions, the pro-

posed methodology outperforms all baseline cases.

Percentage of Data in the

Central Server

Average Accuracy over the

Local Clients

20% 32.83%

40% 33.08%

60% 32.84%

80% 34.32%

100% 35.16%

FedLID(Ours) 48.88%

Table 3: Comparison of our method with different percentages of

available data in the central server. The data in the local clients are

divided in an imbalanced way.

In relation to a comparison with state-of-the-art methods,

FedLID demonstrates exceptional performance, outpacing

the next closest approach by a 10% margin, as portayed in

Table 4. This impressive outcome is achieved despite the

fact that each client has less data, and the network used is

smaller in terms of parameters.

It is evident from the results that the proposed method

exhibits improved accuracy on Non-IID data compared to

IID data distributions (48.88% and 47.52% respectively).

This is due to the fact that in the IID setting, the training

data across nodes is representative of the overall popula-

tion, and the local model can learn common patterns more
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Method Architectute Clients CIFAR100

FedSimCLR ResNet50 5 33.63%

FedCA ResNet50 5 38.94%

FedLID (Ours) ResNet18 10 48.88%
Table 4: Average Accuracy over the local clients on CIFAR-100

udner the Non-IID setting with α = 0.5.

effectively, leading to fast convergence. In addition, the pre-

text task used for self-supervision is almost aligned with the

target supervised task, thus the fine-tuning process on the

balanced (i.e. uniformly distributed accross nodes) dataset

does not struggle to align the learned representation with

the task-specific requirements; hence leading to less benefit

from self-supervision step. On the contrary, self-supervised

methods often excel in scenarios where there are variations,

complex dependencies, or imbalances in the data distribu-

tion, as they can capture the underlying structure and ex-

tract meaningful representations. Consequently, in homo-

geneous scenarios, the impact of self-supervision may be

relatively diminished, thus largely explains the difference

in performance.

4.3.3 Weakly annotated setting

In an effort to investigate the impact on performance, we

intentionally reduced the available data to 10%, aiming to

create conditions of partial annotation in the local nodes.

This approach allows us to study the consequences both

prior to and following the application of the proposed self-

supervised method at global level. The results demonstrate

that despite the significant reduction in local data and a lim-

ited number of training iterations (10 local epochs and 10
federated rounds), the performance slightly increases com-

pared to the baseline approach (i.e. FedCA) in the IID set-

ting while the comparison is favorable in the context of

Non-IID, as depicted in Table 5. It is evident that the lim-

ited number of local epochs hampers performance improve-

ment, and the local model has potential for further conver-

gence, as illustrated by the accompanying diagrams. Fur-

thermore, it can be observed that increasing the number of

communication rounds consistently enhances performance,

showcasing the cumulative strength of the self-supervised

model in the federated aggregation process.

Label Fraction Setting Method CIFAR100

10%

IID
FedCA 32.09%

FedLID(Ours) 33.51%

Non-IID
FedCA 22.46%

FedLID(Ours) 24.12%
Table 5: Accuracy of the state-of-the-art in weakly annotated

scheme with different label ratios. FedCA’s total number of lo-

cal clients is 5, while FedLID is utilizing a federated system with

10 clients in total.

Figure 3: Comparison of the top-1 accuracy on CIFAR-100 in an

IID setting, over the federated rounds of FedLID and the base-

line. The dotted line is the aggregation of the local models and the

training of the centralized server.g of the centralized server.

Figure 4: Comparison of the top-1 accuracy on CIFAR-100 in

a Non-IID setting, over the federated rounds of FedLID and the

baseline. The dotted line is the aggregation of the local models

and the training of the centralized server.

5. Conclusions

This study addresses the challenges of training visual

models with limited and scattered data by leveraging the

power of representation learning techniques under the FL

paradigm. It explores various methodologies, including

self-supervised, and unsupervised learning, in the context

of federated settings. The proposed approach empowers the

central server to leverage every piece of data within its pos-

session, even in scenarios where labeled data is limited or

non-existent. By utilizing CLR techniques, the approach

explores meaningful representations and extracts informa-

tive features at a global level. The proposed solution can op-

erate efficiently at a local level without prior knowledge of

the characteristics or distribution of data across nodes. Ad-

ditionally, it offers substantial improvements, particularly

in cases where data are significantly limited. The exten-

sive experimentation and comparative evaluation validate

the effectiveness of the proposed approach, highlighting its

advantages over traditional fully-supervised learning meth-

ods. This research contributes to the advancement of self-

supervised learning in federated settings, offering promis-

ing opportunities for robust visual analysis tasks with lim-

ited data.
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